Risk Factors and Complications in Implant Dentistry
Recognition, Treatment and Prevention

May 10, 2019
Disclosure

• Private practice in “Periodontics”
• Utilize multiple implant systems & designs
• Not employed by any company or University
• Not received personal grants or subsidies
• Have received sponsorship for lectures
• ODA compensation for this seminar
“Risk Factors in Implant Dentistry”
Learning Objectives:

• Rely on an “Evidence Based Approach”
• Review “Risk Factors” reported in the literature
• Reveal complications from a Private Practice setting
• Identify risk factors impacting on survival and success
• Recognize procedures that are predictably successful
• Describe techniques that can reduce complications
• Demonstrate treatments to deal with complications
Increasing Complications: Why?

- More dental implants being placed
- More inexperienced implant dentists
- Inadequate training courses taken
- Lectures relaying unrealistic simplicity
- Aggressive treatment of non-ideal sites
- Unproven materials / techniques
- Increased Peri-implantitis over time
- Longer term follow-ups up to 30 years
Answer:

Knowledge of Risk factors from Evidence Based Information is required for accurate Diagnosis & Treatment Planning and Patient Informed Consent
Diagnosis and Treatment Planning

• 1) Initial patient interview (Subjective Assessment)
 • Patient: complaints, problems, expectations, goals, limitations
 • Past & present medical & dental history, referrals? precautions?

• 2) Diagnostic Data Collection (Objective Assessment)
 • A) Clinical Exam (dental, periodontal, occlusal, esthetic analysis)
 • B) Radiographic Exam (e.g. periapicals, panoramic, CT)
 • C) Photographs / D) Study Models / E) Diagnostic Wax-ups

• 3) Diagnosis / Prognosis (risk factor assessment)

• 4) Treatment Plan (multidisciplinary, options, referrals? etc.)

• 5) Consultations (achieving patient (“Informed consent”))

• 6) Treatment- (sequential multidisciplinary approach)

• 7) Maintenance- (patient and professional responsibilities)
Evidence-Based Dentistry

5 Steps
- Question
- Find
- Appraise
- Act
- Evaluate

CLINICIAN
Skill and Judgement

PATIENT
Needs and Preferences

EVIDENCE
Best Available
Published Studies:
Applicability to Private Practice?

- All implants included?
- Only the best clinicians?
- Risky patients excluded?
- Risky procedures excluded?
- Statistical vs. Clinical significance?
- Protocols similar to private practice?
Implant “Survival” Statistics

Do not account for bone loss and other complications
Private Practice: Implant Documentation

• Data entry on "Triton-DIMS"
 • Relational data base
 • User defined attributes and queries
 • Statistical analysis & reports e.g. "Lifetables"
• Data on over 14,750 implants
• Follow-ups for up to 30 years

Dr. Murray Arlin, Private Practice
Private Practice: “Experience”

Private Practice “**Empiricism**” (“my clinical impression is..”)
- Procedures that **work** are repeated!
- Procedures that **don’t work** are abandoned!
- **Obvious** risk factors are easily recognized
- **Subtle** risk factors are very difficult to identify
 - (e.g. survival of 96% vs 98% = 50% fewer failures!)

Private Practice “**Well Controlled Study**”:
- Potential for a long-term large scale study
- **Obvious** factors are accurately quantified
- **Subtle** factors can also be identified & quantified???
Implant Dentistry Risk Factors

<table>
<thead>
<tr>
<th>Host / Systemic</th>
<th>Host / Local</th>
<th>Operator</th>
<th>Biomaterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Age</td>
<td>Bone: Quality/Quantity</td>
<td>Experience/Expertise</td>
<td>Material Biocompatibility</td>
</tr>
<tr>
<td>Health / Medications</td>
<td>Soft Tissue: Biotype / Keratinization</td>
<td>Surgical/Prosthetic Techniques</td>
<td>Implant Material</td>
</tr>
<tr>
<td>Periodontitis History</td>
<td>Plaque Control</td>
<td>Surgical/Prosthetic Protocols</td>
<td>Implant Surface</td>
</tr>
<tr>
<td>Smoking</td>
<td>Excessive Load</td>
<td></td>
<td>Implant Design</td>
</tr>
<tr>
<td>Genetic Factors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excessive Load
- Host Related
 - Transmucosal
 - Parafunction
 - Bruxism
- Operator Related
 - Implant: Size / # / Distribution
 - Materials / Occlusion
 - Splints / Cantilevers / Ratio
- Early vs Late Effects
- Biological Effects
- Mechanical Effects

Surgical Techniques
- Sterile vs Aseptic
- Prophylactic Antibiotics
- Surgical Incision
 - Surgical Trauma
 - Excess Heat
 - Excess Compression
 - Inadequate Congruency
- Malpositioned Implants
 - Oro-facially
 - Mesio-distally
 - Apico-occlusally
 - Invasion of Anatomy

Surgical Protocols
- 1 vs 2 stage
- Immediate Placement
- Early Placement
- Delayed Placement
- Failed Replacement
 - immediate / early / delayed
- Immediate Loading
- Number of Implants
- Implant Connection to Natural Teeth

Implant Design
- Crestal Module
- Platform Shift
- Fracture Risk
 - Material Diameter Load Connection
- Short Implants
- Narrow Implants
- Wide Implants
- Tapered Implants

Soft Tissue
- Biotype / Keratinization

Bone
- Quality/Quantity

Excessive Load
- Surgical/Prosthetic Techniques
- Surgical/Prosthetic Protocols

Material Biocompatibility
- Implant Material
- Implant Surface
- Implant Design
Summary: Host Systemic Risk Factors

- **No apparent significant effect:**
 - Age / Controlled Diabetes / Many systemic conditions and meds

- **Higher implant failure and complication rates with:**
 - Males, Diabetes-uncontrolled (some studies)
 - Previous and ongoing Periodontitis
 - Strongest association with “Aggressive Periodontitis”
 - More with very rough surfaces e.g. Hydroxy-Apatite, TPS
 - Smoking (many studies but “direct” or “associated”)
 - Dose dependant? / Reduction-Cessation may reduce risk?
 - Reduced risk with “medium-rough” surfaced implants

- Genetic predisposition? Idiopathic Etiologies?
 - May be synergistic with smoking
 - A risk factor for cluster failures?
 - Contamination? / Allergy ? / Foreign Body Reaction?
Local Host Risk Factors

Bone Quality:
- Type 4 bone
- Irradiation
- Infection

Bone Quantity:
- Thin Bone
- Grafted Bone

Excessive Load:
- Early motion over 50 µm
- Bruxism
- Prosthetic complications

Plaque Control:
- Peri-implantitis (8x!)

Soft Tissue Thickness <2 mm:
- Implant survival
- Facial bone loss

Insufficient Keratinized Mucosa:
- Implant survival
- Inflammation
Surgical Protocol

- Flapless implant surgery?
- One or two stage procedure
- Immediate implant placement
- Early implant placement
- Immediate implant replacement
- Early implant replacement
- Delayed implant replacement
- Early / Immediate loading
- Number of supporting implants
- Connection to natural teeth
Flapless Implant Surgery

- Decreased morbidity and time
- Increased risk of malposition
- CBCT and Guides important
- Guided Surgery ideally
- Keratinized gingiva preservation
- Expertise to augment tissues
- Expertise to treat complications
Technique: Immediate Implant
(Optimizing Function and Esthetics)

- “Atraumatic” flapless or minimal reflection
- “Atraumatic” extraction (periotomes etc.)
- Preserve socket walls (especially facial)
- Drilling to avoid osseous perforations
- Optimal implant positioning (3 dimensions)
 - Priority: avoid compression of facial bone!
- Achieve good initial implant stability (30Ncm+)
- Optimal implant: 1-design, 2-size, 3-shape, 4-surface
 - Apical cutting threads, Large to extend beyond socket to stabilize in bone, Tapered?, Medium rough surface
- Provisionalization: control load, optimize esthetics
Teeth Connected to Implants

Advantages
- Tactile perception?
- Increased comfort?
- Increased chewing?
- Increased efficiency?
- Avoid vital structures
- Less graft requirements
- Decreased cost
- Patient acceptance

Disadvantages
- Intrusion of teeth
- Biomechanical issues
 - Component fracture
 - Screw loosening
 - Cement failure
 - Tooth decay / fracture
 - Crown fracture
- Perio / Endo lesions
- Peri-implantitis
Summary: Operator Related Factors

• Experience: strong evidence of a “learning curve”
• Sterile vs Aseptic: equivalent early success rates
• Surgical incision: no apparent effect on early success
• Surgical trauma:
 • Excess heat generation associated with early failure
 • Excess bone compression likely associated with increased bone loss and implant failure (lack of scientific studies)
 • Inadequate bone fit associated with:
 • Increased early and late implant failure?
 • Suggestion: Long-Term Temporization” of initially mobile implants.
Summary: Operator Related Factors

• **Implant malposition** may lead to complications with:
 • Implant failure, crestal bone loss, esthetics, prosthetics, and neurosensory disturbances (e.g. paresthesia)

• **Surgical Protocols:**
 • 1 vs 2 stage surgery yield similar success rates
 • 2 stage protocol should be considered for “at risk” cases
 • Partially submerged implants should be fully exposed
 • Replacement of Failed Implants:
 • Immediate replacement requires careful case selection, and despite risk may be of indicated, due to minimal intervention
 • Delayed replacement survival rates similar to conventional
 • Replacement survival rates may improve with rough surfaces
Summary: Operator Related Factors

• “Early/Immediate Loading”
 • Can be successful if micromotion controlled
 • May actually increase the % of bone to implant contact
 • Rough surface implants may display improved survival

• “Immediate Loading”-Clinical Guidelines
 • Single and Partially edentulous - not routine
Summary: Operator Related Factors

• **Number of Supporting Implants-Variables:**
 • 4 for full-arch fixed
 • Preferably 2 for mandibular overdentures, 4 for maxillary

• **Cantilever Length:**
 • Creates increased stress
 • Research suggests higher prosthetic complications
 • Need well-designed prostheses to support

• **Connection to natural Teeth:**
 • Increased complications (long term) most studies
Short Implants: Clinical Guidelines
(Evidence Based and Anecdotal)

• “Informed Consent” e.g. patient told that very short implants (<7mm) may have twice the failure rate
• Utilize wider rough implant surfaced implants
• Aim for splinted 1:1 “implant to tooth ratio”
• Avoid poor bone quality (e.g. posterior maxilla)
• Achieve good primary stability and avoid excess early loading e.g. submerge, no immediate loading
• Avoid prosthetic overloading:
 • Avoid cantilevers, balancing side contacts
 • Provide protected occlusion, night guards
 • Splint implants together, check occlusion regularly
Summary: Biomaterials

- **Rough Surface Implants may exhibit:**
 - Higher early survival rates vs “turned” titanium
 - Higher early survival in poor quality/quantity bone
 - Higher early failure with TPS Tapered “Replace”
 - Increased late failure e.g. “older” HA and TPS

- **Smooth Surface Implants (turned titanium) exhibited:**
 - Generally higher early failure rates vs rough surfaced implants
 - “Steady State” after 1 year, less than *1% late failure

(*Arlin, unpublished*)
Summary: **Biomaterials-Implant Shape**

- **Fracture:**
 - Narrow internal connection may be susceptible
- **Narrow diameter (3.25+):**
 - similar survival to standard diameter
- **Wide diameter:**
 - May be associated with more bone loss, failure, recession
- **Short Length:**
 - > Failures with “smooth” surfaces and poor bone quality
 - Only slightly lower survival rates with good quality bone
- **Tapered walls:**
 - May increase stability in poor quality bone
Implant Dentistry Risk Factors

Host / Systemic
- Patient Age
- Health / Medications
- Periodontitis History
- Smoking
- Genetic Factors

Host / Local
- Bone:
 - Quality/Quantity
- Soft Tissue:
 - Biotype / Keratinization
- Plaque Control
- Excessive Load

Operator
- Experience/Expertise
- Surgical/Prosthetic Techniques
- Surgical/Prosthetic Protocols

Biomaterial
- Material Biocompatibility
- Implant Material
- Implant Surface
- Implant Design

Excessive Load
- Host Related
 - Transmucosal
 - Parafuction
- Operator Related
 - Implant: Size / # / Distribution
 - Materials / Occlusion
 - Splints / Cantilevers / Ratio
- Early vs Late Effects
- Biological Effects
- Mechanical Effects

Surgical Techniques
- Sterile vs Aseptic
- Prophylactic Antibiotics
- Surgical Incision
- Surgical Trauma
 - Excess Heat
 - Excess Compression
 - Inadequate Congruency
- Malpositioned Implants
 - Oro-facially
 - Mesio-distally
 - Apico-occlusally
 - Invasion of Anatomy

Surgical Protocols
- 1 vs 2 stage
- Immediate Placement
- Early Placement
- Delayed Placement
- Failed Replacement
 - Immediate / early / delayed
- Immediate Loading
- Number of Implants
- Implant Connection to Natural Teeth

Implant Design
- Crestal Module
- Platform Shift
- Fracture Risk
- Material Diameter
- Load Connection
- Narrow Implants
- Wide Implants
- Tapered Implants
“4 Categories”

- 1) Host-Systemic
- 2) Host-Local
- 3) Non-Host-Operator
- 4) Non-Host-Biomaterial

Risk “Factors”

- 1) Systemic Disease/Smoking
- 2) History of Periodontitis
- 3) Hard and Soft Tissues
- 4) Esthetics/Plaque/Occlusion
- 5) Training / Experience
- 6) Protocols and Techniques
- 7) Splints/Cantilevers/Occlusion
- 8) Implant material/surface/design
- 9) Implant size: e.g. short/narrow
- 10) Prosthetics: e.g. Connection